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Abstract

In this study, bifurcation analysis and multiobjective nonlinear model predictive control is performed on a bacterial meningitis disease model. Bifurcation analysis 
is a powerful mathematical tool used to deal with the nonlinear dynamics of any process. Several factors must be considered, and multiple objectives must be met 
simultaneously. The MATLAB program MATCONT was used to perform the bifurcation analysis. The MNLMPC calculations were performed using the optimization 
language PYOMO in conjunction with the state-of-the-art global optimization solvers IPOPT and BARON. The bifurcation analysis revealed the existence of Hopf bifurcation 
point, limit and branchpoint. The MNLMC converged to the utopia solution. The Hopf bifurcation point, which causes an unwanted limit cycle, is eliminated using an 
activation factor involving the tanh function. The limit and branch points (which cause multiple steady-state solutions from a singular point) are very benefi cial because 
they enable the Multiobjective nonlinear model predictive control calculations to converge to the Utopia point (the best possible solution) in the model. 
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Background

Bacterial meningitis is one of the most serious infectious 
diseases known to affect humans, characterized by 
infl ammation of the protective membranes surrounding the 
brain and spinal cord, known as the meninges. This condition 
is primarily caused by bacteria invading the Cerebrospinal Fluid 
(CSF), triggering a severe immune response that can lead to 
rapid deterioration of neurological function. Despite advances 
in medicine and the availability of effective antibiotics, 
bacterial meningitis remains a global health concern due 
to its potential for high morbidity and mortality, especially 
when diagnosis and treatment are delayed. Understanding the 
causes, mechanisms, symptoms, and prevention strategies is 
vital in reducing the burden of this life-threatening disease.

The onset of bacterial meningitis typically begins when 
pathogenic bacteria breach the body’s natural defense 
mechanisms. Common causative agents include Neisseria 
meningitidis (meningococcus), Streptococcus pneumoniae 

(pneumococcus), and Haemophilus infl uenzae type b (Hib). 
However, other bacteria such as Listeria monocytogenes or 
Group B Streptococcus may also be responsible, particularly in 
specifi c populations such as newborns, elderly individuals, 
and immunocompromised patients. These bacteria are often 
transmitted through respiratory droplets or close contact with 
an infected person. Once they colonize the nasopharynx, they 
can enter the bloodstream and cross the blood-brain barrier, 
allowing them to infect the meninges. The body’s immune 
response to this invasion results in infl ammation, increased 
permeability of the blood-brain barrier, and accumulation of 
infl ammatory cells and cytokines within the CSF, all of which 
contribute to the hallmark symptoms of the disease.

The pathophysiology of bacterial meningitis involves a 
complex interplay between bacterial virulence factors and the 
host immune system. When bacteria reach the subarachnoid 
space, they multiply rapidly because the CSF provides a 
nutrient-rich environment with limited immune surveillance. 
The immune system responds with an infl ux of white blood 
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and anticonvulsants, are used as needed to stabilize the patient 
and manage complications.

Despite effective treatment, bacterial meningitis can leave 
survivors with long-term disabilities. Hearing loss is one of 
the most common sequelae, often resulting from damage to 
the cochlea or auditory nerve. Other neurological complications 
include learning disabilities, motor defi cits, seizures, and 
behavioral problems. The severity of outcomes is infl uenced 
by factors such as the speed of diagnosis, age of the patient, 
immune status, and the specifi c causative agent. Infants and 
elderly patients are particularly vulnerable to poor outcomes, 
underscoring the importance of early detection and preventive 
measures. Rehabilitation and long-term follow-up are often 
necessary to address residual disabilities and improve quality 
of life.

Prevention plays a critical role in reducing the global burden 
of bacterial meningitis. Vaccination has proven to be the most 
effective preventive strategy. The widespread use of conjugate 
vaccines against Haemophilus infl uenzae type b, Neisseria 
meningitidis, and Streptococcus pneumoniae has dramatically 
reduced the incidence of meningitis caused by these pathogens, 
especially in developed countries. Routine immunization 
programs for infants and adolescents have been highly 
successful, and travel-related vaccination is recommended 
for individuals visiting areas with high meningococcal disease 
prevalence. In addition to vaccination, prophylactic antibiotics 
may be given to close contacts of infected individuals to prevent 
secondary cases. Public health measures such as maintaining 
good hygiene, reducing overcrowding, and prompt reporting of 
suspected cases are also crucial to controlling outbreaks.

Globally, the epidemiology of bacterial meningitis varies by 
region, age group, and vaccination coverage. In sub-Saharan 
Africa, particularly in the so-called “meningitis belt,” recurrent 
epidemics of meningococcal meningitis have historically caused 
widespread illness and death. Mass vaccination campaigns in 
recent years have signifi cantly reduced these outbreaks, yet 
challenges remain in resource-limited areas where access 
to vaccines and healthcare facilities is still restricted. In 
high-income countries, the disease is now relatively rare, 
but sporadic cases continue to occur, emphasizing the need 
for continued vigilance and research into emerging bacterial 
strains and antibiotic resistance.

Bacterial meningitis is a medical emergency that demands 
immediate recognition and treatment to prevent devastating 
consequences. It is caused by the invasion of bacteria into 
the meninges, leading to infl ammation, brain damage, and 
potentially death if untreated. Advances in microbiology, 
vaccination, and antimicrobial therapy have transformed the 
prognosis of this disease, yet it continues to pose signifi cant 
challenges in many parts of the world. Preventive vaccination, 
early diagnosis, and prompt initiation of appropriate therapy 
remain the cornerstones of effective management. As global 
health efforts continue to improve access to vaccines and 
medical care, the vision of eliminating bacterial meningitis 
as a public health threat becomes increasingly achievable, 

cells, particularly neutrophils, which release enzymes and 
reactive oxygen species to combat the infection. However, 
these defensive mechanisms inadvertently damage brain 
tissue and lead to cerebral edema, elevated intracranial 
pressure, and reduced cerebral perfusion. These processes 
can cause irreversible neurological damage if not promptly 
controlled. In severe cases, disseminated infection can occur, 
leading to sepsis, septic shock, and multiorgan failure. The 
disease progresses quickly, which is why early detection and 
intervention are essential for survival.

Clinically, bacterial meningitis presents with a combination 
of symptoms that vary depending on the age and immune 
status of the patient. The classic triad of meningitis includes 
fever, neck stiffness, and altered mental status, though 
not all patients exhibit all three. Other common symptoms 
include severe headache, photophobia, nausea, vomiting, and 
sensitivity to bright light or loud sounds. In infants and young 
children, symptoms may be nonspecifi c, such as irritability, 
poor feeding, or a bulging fontanelle, making diagnosis more 
challenging. In adults, additional signs such as confusion, 
lethargy, and seizures can occur. Meningococcal meningitis 
may also be accompanied by a characteristic petechial or 
purpuric rash, indicating bloodstream infection. Without 
rapid treatment, the disease can lead to complications such 
as hearing loss, cognitive impairment, hydrocephalus, or even 
death within hours or days of onset.

Diagnosis of bacterial meningitis requires immediate medical 
evaluation and laboratory confi rmation. The cornerstone of 
diagnosis is lumbar puncture, through which cerebrospinal 
fl uid is collected and analyzed. The CSF in bacterial meningitis 
typically shows elevated white blood cell count, predominantly 
neutrophils, increased protein concentration, and decreased 
glucose levels compared to serum. Gram staining and bacterial 
culture of the CSF remain the gold standard for identifying 
the causative organism, although these tests can take time. 
In urgent situations, polymerase chain reaction (PCR) and 
antigen detection tests provide faster results and help guide 
appropriate antibiotic therapy. Additional diagnostic tools such 
as blood cultures, neuroimaging (CT or MRI), and serological 
tests may be employed to assess the extent of infection and 
rule out other causes of neurological symptoms.

Treatment of bacterial meningitis must begin as soon 
as the disease is suspected, often even before confi rmatory 
tests are completed. Empirical antibiotic therapy is initiated 
immediately, typically with broad-spectrum antibiotics that 
cover the most likely pathogens, such as a combination of a 
third-generation cephalosporin (like ceftriaxone or cefotaxime) 
and vancomycin. Once the causative organism is identifi ed 
and its antibiotic sensitivity is known, therapy is adjusted 
accordingly. For certain bacteria like Listeria monocytogenes, 
ampicillin is added to the regimen. In addition to antibiotics, 
corticosteroids such as dexamethasone are sometimes 
administered to reduce infl ammation and prevent neurological 
complications, particularly in cases of pneumococcal 
meningitis. Supportive treatments, including fl uids, oxygen, 
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u2, and u3 stand for appropriate personal preventive measures, 
treatment to infected individuals to reduce their number, and 
screening applied to carrier individuals to detect bacterial 
meningitis disease in populations who do not have symptoms 
of the disease. 

The model equations are 
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The base parameter values are 

111;  0.343;  0.56;  0.31;  1 0.32;  2 0.92;
0.02;  0.21;  0.1118; 0.27; 1 0.0016;  2 0.08;
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Bifurcation analysis 

The MATLAB software MATCONT is used to perform 
the bifurcation calculations. Bifurcation analysis deals with 
multiple steady-states and limit cycles. Multiple steady states 
occur because of the existence of branch and limit points. 
Hopf bifurcation points cause limit cycles. A commonly used 
MATLAB program that locates limit points, branch points, and 
Hopf bifurcation points is MATCONT [23,24]. This program 
detects Limit points (LP), branch points (BP), and Hopf 
bifurcation points(H) for an ODE system. 

( , )
dx f x
dt

                (2)

x  Rn Let the bifurcation parameter be. Since the gradient 
is orthogonal to the tangent vector, 

The tangent plane at any point  1 2 3 4 1[ , , , ,.... ] nw w w w w w  
must satisfy. 

Aw = 0                  (3)

Where A is 

[ / | / ]    A f x f                 (4)

Where f / x is the Jacobian matrix. For both limit and 
branch points, the Jacobian matrix J = [f / x] must be singular. 

For a limit point, there is only one tangent at the point of 
singularity. At this singular point, there is a single non-zero 
vector, y, where Jy=0. This vector is of dimension n. Since there 

offering hope that fewer lives will be lost to this preventable 
and treatable disease.

Martcheva, et al. [1] discussed the transmission of 
meningococcal infection using a mathematical model. Irving, 
et al. [2] modeled meningococcal meningitis in the African 
meningitis belt. Bloch, et al. [3] discussed the molecular 
approaches to the diagnosis of meningitis and encephalitis. 
Blyuss [4] mathematically modelled the dynamics of 
meningococcal meningitis in Africa. Elmojtaba, et al. [5] 
developed a mathematical model for meningitis disease. 
Oordt-Speets, et al. [6] investigated the global etiology of 
bacterial meningitis. Asamoah, et al. [7] modelled the bacterial 
meningitis transmission dynamics with control measures. 
Yusuf [8] modeled and simulated the meningitis transmission 
dynamics. Agusto, et al. [9] performed optimal control studies 
and cost-effective analysis of the 2017 meningitis outbreak 
in Nigeria. Koutangni [10] developed compartmental models 
for seasonal hyperendemic bacterial meningitis in the African 
meningitis belt. 

Asamoah, et al. [11] performed backward bifurcation and 
sensitivity analysis for bacterial meningitis transmission 
dynamics with a nonlinear recovery rate. Musa, et al. 
[12] modelled and analyzed meningitis transmission 
dynamics. Baba, et al. [13] performed a theoretical analysis 
of a meningitis model. Ali, et al. [14] demonstrated an 
antimicrobial resistance pattern of bacterial meningitis 
among patients in Pakistan. Mazamay, et al. [15] performed 
an overview of bacterial meningitis epidemics in Africa from 
1928 to 2018 with a focus on epidemics “outside-the-belt”. 
Workineh, et al. [16] performed optimal control of the spread 
of meningitis in the presence of societal behavior change 
and information-dependent vaccination. Veronica, et al. [17] 
performed mathematical modeling and stability analyses on 
the transmission dynamics of bacterial meningitis. AfolabiM, 
et al. [18] developed a mathematical model on transmission 
dynamics of meningococcal meningitis. Crankson [19] modeled 
and performed optimal control studies of the Transmission 
Dynamics of Bacterial Meningitis Population in Ghana. Yano, et 
al. [20] performed an optimal control analysis of meningococcal 
meningitis disease with varying population sizes. Belay, et al. 
[21,22] developed and analyzed a mathematical modelfor the 
transmission dynamics of the bacterial meningitis disease. 

In this work, bifurcation analysis and multiobjective 
nonlinear model predictive control is performed on the bacterial 
meningitis disease model described in Belay, et al. [21,22]. 
The paper is organized as follows. First, the model equations 
are presented, followed by a discussion of the numerical 
techniques involving bifurcation analysis and multiobjective 
nonlinear model predictive control (MNLMPC). The results and 
discussion are then presented, followed by the conclusions. 

Model equations [21,22]

The variables (sv, cv, iv, vv, dv,rv) represent the individuals 
susceptible to bacteria, meningitis carrier individuals, infected 
individuals, vaccinated individuals, individuals who are drug-
resistant, and recovered individuals. The control variables u1, 
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is only one tangent the the vector

1 2 3 4( , , , ,... ) ny y y y y y  must align with 1 2 3 4ˆ ( , , , ,... )nw w w w w w  
. Since 

ˆ 0Jw Aw                     (5)

The  n+1th component of the tangent vector wn+1 = 0 at a 
limit point (LP). 

For a branch point, there must exist two tangents at the 
singularity. Let the two tangents be z and w. This implies that 

0
0




Az
Aw

                  (6)

Consider a vector v that is orthogonal to one of the tangents 
(say w). v can be expressed as a linear combination of z and w 

(   v z w ). Since 0 Az Aw  ; 0Av  and since w and v 

are orthogonal, 

0Tw v . Hence 0T

A
Bv v

w
 

  
 

 which implies that B is 

singular. 

Hence, for a branch point (BP) the matrix T

A
B

w
 

  
 

 must be 

singular. At a Hopf bifurcation point, 

det(2 ( , )@ ) 0 x nf x I              (7)

@ indicates the bialternate product while In is the n-square 
identity matrix. Hopf bifurcations cause limit cycles and 
should be eliminated because limit cycles make optimization 
and control tasks very diffi cult. More details can be found in 
Kuznetsov [25,26] and Govaerts [27].

Hopf bifurcations cause limit cycles. The tanh activation 
function (where a control value u is replaced by) (u tanh u / 
) is used to eliminate spikes in the optimal control profi les 
[28-31]. Sridhar [32] explained with several examples how the 
activation factor involving the tanh function also eliminates 
the Hopf bifurcation points. This was because the tanh function 
increases the oscillation time period in the limit cycle. 

Multiobjective Nonlinear Model Predictive 
Control(MNLMPC) 

The rigorous multiobjective nonlinear model predictive 
control (MNLMPC) method developed by Flores Tlacuahuaz, et 
al. [33] was used. 

Consider a problem where the variables. 
0

( )





i f

i

t t

j i
t
q t  (j = 

1, 2..n) have to be optimized simultaneously for a dynamic 
problem 

( , )
dx F x u
dt

             (8)

tf Being the fi nal time value, and n the total number of 
objective variablesad the control parameter. The single objective 
optimal control problem is solved individually optimizing each 

of the variables. 
0
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0
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


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lead to the values *
jq  . Then, the multiobjective optimal control 

(MOOC) problem that will be solved is 

0
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1

min( ( ( ) ))
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






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i
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q t q
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            (9)

This will provide the values of u atvarious times. The 
fi rst obtained control value of u is implemented and the rest 
arediscarded. This procedure is repeated until the implemented 
and the fi rst obtained control values are the same or if the 

Utopia point where (
0

*( )



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i f

i

t t

j i j
t

q t q   For all j) is obtained. 

Pyomo [34] is used for these calculations. Here, the 
differential equations areconverted to a Nonlinear Program 
(NLP) using the orthogonal collocation method The NLP is 
solved using IPOPT [35]and confi rmed as a global solution with 
BARON [36]. 

The steps of the algorithm are as follows 

1. Optimize and obtain  
*
jq .

2. Minimize 
0

* 2

1

( ( ( ) ))





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i f

i

t tn

j i j
j t

q t q   and getthe control 

values at various times.

3. Implement the fi rst obtained control values. 

4. Repeat steps 1 to 3 until there is an insignifi cant difference 
between the implemented and the fi rst obtained value of 
the control variables or if the Utopia point is achieved. 

The Utopia point is when 

0

*( )



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i f

i

t t

j i j
t

q t q   For all j. 

Sridhar [37] demonstrated that when the bifurcation 
analysis revealed the presence of limit and branch points the 
MNLMPC calculations to converge to the Utopia solution. For 
this, the singularity condition, caused by the presence of the 
limit or branch points was imposed on the co-state equation 

[38]. If the minimization of q1 lead to the value   *
1q  and 

the minimization of q2 lead to the value  *
2q  The MNLPMC 

calculations will minimize the function.  * 2 * 2
1 1 2 2( ) ( )  q q q q . 

The multiobjective optimal control problem is

* 2 * 2min ( ) ( ) ( , )1 1 2 2   
dxq q q q subject to F x u
dt         (10) 
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Differentiating the objective function results in 

* 2 * 2 * * * *
1 1 2 2 1 1 1 1 2 2 2 2(( ) ( ) ) 2( ) ( ) 2( ) ( )        

i i i

d d dq q q q q q q q q q q q
dx dx dx   

                 
(11)

The Utopia point requires that both. *
1 1( )q q   And *

2 2( )q q   
Are zero. Hence   

* 2 * 2
1 1 2 2(( ) ( ) ) 0   

i

d q q q q
dx                              (12)

The optimal control co-state equation [43] is 

* 2 * 2
1 1 2 2( ) (( ) ( ) ) ; ( ) 0        i x i i f

i

d d q q q q f t
dt dx       (13)

i Is the Lagrangian multiplier. tf Is the fi nal time. The fi rst 
term in this equation is 0 and hence. 

( ) ; ( ) 0    i x i i f
d f t
dt               (14)

At a limit or a branch point, for the set of ODE ( , )
dx f x u
dt

 

fx Is singular. Hence there are two different vectors-values for 

[i] where  ( ) 0 i
d
dt  and  ( ) 0 i

d
dt . In between there is a 

vector [i] where  ( ) 0 i
d
dt

. This coupled with the boundary 

condition. ( ) 0 i ft  Will lead to [i] = 0 This makes the problem 

an unconstrained optimization problem, and the optimal 
solution is the Utopia solution. 

Results and discussion 

With u1 as the bifurcation parameter, one branch point and 
a limit point were found at 

(sv vv cv iv dv rv u1) values of ( 1479.119048, 4070.880952, 
0, 0, 0, 0, 0.979832 ), and

(1479.122086, 4070.889488, -0.001283 -0.000468, 
-0.000273, -0.003996, 0.979832 ) (Figure 1a).

With u2 as the bifurcation parameter, one branch point and 
a Hopf bifurcation point were found at 

(sv vv cv iv dv rv u2) values of ( 1479.119048, 4070.880952, 
0, 0, 0, 0, 8.331833)

and ( 1479.119048, 4070.880952, 0, 0, 0, 0, 9.228870 )
(Figure 1b). The limit-cycle produced by this Hopf bifurcation 
is seen in Figure 1c.

When u2 is modifi ed to u2=u2(tanh(u2))/0.01 a branch 
point occurs at 

 (1479.119048, 4070.880952, 0, 0, 0, 0, 0.292719), 

and the Hopf bifurcation point disappears (Figure 1d), 
thereby validating the hypothesis presented in Sridhar [32].

For the MNLMPC calculations u1, u2, and u3 are the control 

Figure 1a: Bifurcation diagram with u1 as bifurcation parameter.

Figure 1b: Bifurcation Diagram (u2 is the bifurcation parameter).

Figure 1c: Limit cycle(u2 is bifurcation parameter).
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parameters, and were minimized individually, and each 
minimization led to avalue of 0. The overall optimal control 
problem will involve the minimization of was minimized 
subject to the equations governing the model. This led to a 
value of zero (the Utopia point). The MNLMPC values of the 
control variables, u1, u2, and u3, were 0.2264, 0.23, and 0.8293, 
respectively. The MNLMPC profi les are shown in Figures 2a-
2d. The control profi les of u1, u2, and u3 exhibited noise, and 

this was remedied using the Savitzky-Golay fi lter to produce 
the smooth profi les u1sg, u2sg, and u3sg. The presence of 
the limit and branch points is benefi cial because it allows the 
MNLMPC calculations to attain the Utopia solution, validating 
the analysis of Sridhar [37].

Conclusion

Bifurcation analysis and multiobjective nonlinear control 
(MNLMPC) studies on a bacterial meningitis disease model. The 
bifurcation analysis revealed the existence of Hopf bifurcation 
points, limit points, and branch points. The Hopf bifurcation 
point, which causes an unwanted limit cycle, is eliminated 
using an activation factor involving the tanh function. The 
limit and branch points (which cause multiple steady-state 
solutions from a singular point) are very benefi cial because 
they enable the Multiobjective nonlinear model predictive 
control calculations to converge to the Utopia point (the best 
possible solution) in the models. A combination of bifurcation 
analysis and Multiobjective Nonlinear Model Predictive Control 
(MNLMPC) for a bacterial meningitis disease model is the main 
contribution of this paper. 

Data availability statement

All data used is presented in the paper.

Figure 1d: Hof bifurcation disappears when u2 is modifi ed to u2(tanh(u2))/0.01.

Figure 2a: MNLMPC (sv, rv, vv).

Figure 2b: MNLMPC (dv, cv, iv).

Figure 2c: MNLMPC (u1, u2, u3).

Figure 2d: MNLMPC (u1sg, u2sg, u3sg).
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