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Abstract

Bifurcation analysis and nonlinear model predictive control were performed on drug addiction models. Rigorous proof showing the existence of bifurcation (branch) 
points is presented along with computational validation. It is also demonstrated (both numerically and analytically) that the presence of the branch points was instrumental 
in obtaining the Utopia solution when the multiobjective nonlinear model prediction calculations were performed. Bifurcation analysis was performed using the MATLAB 
software MATCONT while the multi-objective nonlinear model predictive control was performed by using the optimization language PYOMO.

Introduction

Mental health has become a signifi cant focus for researchers 
and medical doctors in the last decade. Ironically, drug addiction 
is both cause and effect for the existence of mental health 
problems. People with mental health issues resort to drugs 
and drugs in turn lead to mental health problems. Additionally, 
drug addiction has led to a considerable amount of poverty 
and crime. It is therefore important to develop strategies to 
curb drug addiction. The problem of drug addiction has led 
to computational research to develop reliable techniques to 
be able to control drug addiction. This work aims to perform 
bifurcation analysis in conjunction with multiobjective 
nonlinear model predictive control (MNLMPC) calculations 
on models involving drug addiction. This paper is organized 
as follows. First, the background section with the literature 
review is presented. The bifurcation analysis techniques and 
the multiobjective nonlinear model predictive control strategies 
are presented followed by a description of how the presence 
of singular points affects the MNLMPC calculations. Two drug 
addiction example problems where MNLMPC calculations 
are performed in conjunction with bifurcation analysis are 
presented. It is numerically demonstrated that the presence 

of bifurcation points in the drug addiction models enables the 
MNLMPC calculations to converge to the Utopia solution. It is 
essential to develop rigorous strategies to be able to effectively 
combat the drug addiction problem minimizing the number of 
drug addicts and avoiding the wastage of resources. This paper 
is a step in that direction.

Background

Bae [1] studied the dynamics of tobacco addiction models. 
Mushayabasa, and co-workers [2-4] performed dynamic and 
optimal control studies of drug addiction models. Hasan, et 
al. [5] investigated the effect of having drug rehabilitation 
centers to combat drug addiction. Islam, et al. [6,7] developed 
a mathematical analysis of some dynamic Models of drug 
addiction, while Lavi, et al. [8] studied the dynamics of drug 
resistance. Nyabadza, et al. [9] and White, et al. [10] modeled 
the dynamics of crystal meth abuse and heroin epidemics. 
Rwat and co-workers [11] examined the effect of recycling the 
recovered individuals back into the population while Donoghoe 
[12] studied the effect of drugs on global health. Murray, et 
al. (2007) [13] studied the effect of cannabis on mental health 
Pluddemann, [14] investigated the use of strategies to, monitor 
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alcohol and substance abuse. Recent work of McGinty, et al. 
[15], Hooker, et al. [16], Butler, et al. [17], Scott, et al. [18] 
Chang, et al. [19] and Paquette, et al. [20] have demonstrated 
the devastating effects of drug addiction and the urgent need 
to combat this problem. 

Akanni, et al. [21] Abidemi, et al. [22] and Olaniyi, et al. 
[23] studied dynamic models involving illicit drug use. All 
the optimal control work done so far involves single objective 
minimization. In this work, multiobjective nonlinear model 
predictive control calculations are performed on drug 
addiction models in conjunction with bifurcation analysis. It 
is numerically demonstrated for two problems involving drug 
addiction that the presence of bifurcation points enables the 
MNLMPC calculations to converge to the Utopia solution. 

The bifurcation analysis and the MNLPMC methods 
will now be presented followed by an explanation as to why 
the presence of bifurcation points leads to the MNLMPC 
calculations converging to the Utopia solution.

Bifurcation analysis 

The existence of multiple steady-states (caused by limit 
and branch point singularities) and oscillatory behavior caused 
by Hopf bifurcation points) in chemical processes has led to 
a lot of computational work to explain the causes of these 
nonlinear phenomena. N MATCONT, [24,25] is a commonly 
used software to fi nd limit points, branch points, and Hopf 
bifurcation points. Consider an ODE system. 
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With  the bifurcation parameter. The matrix A can be 
written in a compact form as 

[ | ]fA B






                  (3)

The tangent surface must be satisfi ed. 

0Av                    (4)

For both limit and branch points the matrix B must be 

singular. For a limit point (LP) the n+1th component of the 
tangent vector vn+1 = 0 and for a Branch Point (BP) the matrix 

A
Tv

 
 
 

 must be singular., The function det(2 ( , ) )f x Ix n   

should be zero for a Hopf bifurcation point.   Indicates the 
alternate product while In is the n-square identity matrix. A 
detailed derivation can be found in Kuznetsov [26,27] and 
Govaerts [28]. Sridhar [29] used Matcont to perform bifurcation 
analysis on chemical engineering problems.

MNLMPC (Multiobjective Nonlinear Model Predictive 
Control) method

The Multiobjective Nonlinear Model Predictive Control 
(MNLMPC) method was fi rst proposed by Flores Tlacuahuaz, et 
al. [30] and used by Sridhar [31]. This method is rigorous and 
it does not involve the use of weighting functions nor does it 
impose additional parameters or additional constraints on the 
problem unlike the weighted function or the epsilon correction 
method [32]. For a problem that is posed as 

min ( , ) ( , .... )1 2
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                (5)

The MNLMPC method fi rst solves dynamic optimization 
problems independently minimizing/maximizing each xi 
individually. The minimization/maximization of xi will lead 
to the values xi* . Then the optimization problem that will be 
solved is 

* 2min { }
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dx L U L Usubject to F x u h x u x x x u u u
dt


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                                  (6)

This will provide the control values for various times. The 
fi rst obtained control value is implemented and the remaining 
is discarded. This procedure is repeated until the implemented 
and the fi rst obtained control values are the same. 

The optimization package in Python, Pyomo [33] where 
the differential equations are automatically converted to a 
Nonlinear Program (NLP) using the orthogonal collocation 
method [34] is commonly used for these calculations. State-of-
the-art solvers like IPOPT [35] and BARON [36] are normally 
used in conjunction with PYOMO. 

Effect of singularities (Limit Point (LP) and Branch Point 
(BP)) on MNLMPC

Let the minimization be of the variables P1, P2 l result in the 
values M1 and M2. The multiobjective objective function to be 
minimized will result in the problem. 
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The Euler Lagrange equation also known as costate 
equations will be 

( )
d Pi gi idt xi
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i is the Lagrangian multiplier. Taking the derivative of the 
objective function we get 
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At the Utopia point both (P1 – M1) and (P2 – M2) are zero. 
Hence  
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The co-state equation in optimal control is 
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i is the Lagrangian multiplier. The fi rst term in this 
equation is 0 and hence. 
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If the set of ODE ( , )
dx

g x u
dt

  has a limit or a branch point, 
gx is singular. 

This implies that there are two different vectors-values for 

[i] where ( ) 0
d

idt
   and ( ) 0

d
idt
   . In between there is a 

vector [i] where ( ) 0.
d

idt
   This coupled with the boundary 

condition i(tf) = 0 will lead to [i] = 0 which will make the 
problem an unconstrained optimization problem. The only 
solution for the unconstrained problem is the Utopia solution.

Results and discussion 

In this section, the results of bifurcation analysis and 
MNLMPC calculations for two problems involving drug 
addiction are presented. The models used are described in 
Islam, et al. [7] and Mushayabasa, et al. [4]. The equations 

for each problem are presented followed by the bifurcation 
analysis and MNLMPC results. 

Problem 1 Islam, et al. [7]

Equations representing problem 1

• Sa(t) represents individuals who are not drug users, but 
are at a high risk of taking drugs

• L(t)) represents light drug users

• H(t) represents heavy drug users 

• Rv(t) represents drug users under treatment in 
rehabilitation

• Q(t) represents individuals who will never take drugs

The equations are 

1

2

3

1 2 3

dSa r S H S u Sa a a
dt

dL
S H L L L u La

dt

dH
L H H p R u Ha

dt
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dt

 
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    

   

    

              (13)

 The model parameters are 

r = 4.25; μ = 0.00561;  = 0.002;  = 0.6;  = 0.025;  = 1.5; pa 
= 0.02 

u1,u2,u3 are the control variables

where 

• r represents the recruitment rate of the population

• μ is the natural mortality rate

•  is the interaction rate among the susceptible and light 
drug users

•  is the effective rate at which light users convert into 
heavy drug users

•  the removal rate from addiction without treatment

•  is the rate at which heavy addicts are being sent to 
rehabilitation for treatment

• u1 is the awareness and educational programs 

• u2 is the family-based care

• u3 represents the effectiveness of rehabilitation centers



099

https://www.organscigroup.com/jcmc

Citation: Sridhar LN. Bifurcation Analysis and Multiobjective Nonlinear Model Predictive Control of Drug Addiction Models. J Cardiovasc Med Cardiol. 2024;11(4):096-
102. Available from: https://dx.doi.org/10.17352/2455-2976.000215

Bifurcation analysis for problem 1

When bifurcation analysis with μ the bifurcation parameter 
was performed on the equations representing problem 1, a 
branch point was found a [Sa, L, H, Rv, Q, μ] values of (782.26, 
0.0, 0, 0,0, 0.005433 ). Figure 1a shows the bifurcation diagram 
with this branch point. 

MLNMPC for problem 1

The MNLMPC of problem 1, ( )Q t  was maximized 

and resulted in a value of 2000; while ( )H t  was 
minimized and resulted in a value of 0. The multiobjective 
optimal control problem involved the minimization of 

2 2( ( ) 2000) ( ( ) 0)Q t H t     the subject to the dynamic 

equation set representing this problem. This resulted in 
the Utopia point of 0 and the MNLMPC values of the control 
variables obtained were [u1, u2, u3] = [0.0004, 0.0405, 0.5362]. 
The MNLMPC profi les are shown in Figures 1a-1i. 

Problem 2 Mushayabasa, et al. [4]

Equations representing problem 2

In this problem, the time-dependent variables are 

• Sv(t) susceptible individuals 

• I(t) light or occasional drug users

• Iav(t) heavy drug users

• Mv(t) mentally ill population and (individuals who suffer 
mental illness due to drug use, 

• Rv(t) detected illicit drug users

Figure 1a: Bifurcation diagram for problem 1.

Figure 1b: MNLMPC diagram for problem 1 ( I vs. t). 

Figure 1c: MNLMPC diagram for problem 1 (sa vs. t). 

Figure 1d: MNLMPC diagram for problem 1 (rv vs. t). 

Figure 1e: MNLMPC diagram for problem 1 ( h vs. t). 

Figure 1f: MNLMPC diagram for problem 1 (q vs. t). 
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The equations that represent the drug addiction problem 
are 

(1 )

(1 ) ( )

( )

( )

( ) ( )

( )

dSv u S Sc v v
dt

dIv u S v Ic v c v
dt

dIav I v d Iv c av
dt

dMv I I v Mv av c v
dt

dRv v I I M Rc av v v
dt

I kIv av

  

     

   

    

    

 

   

      

    

    

    

 

              (14)

And the parameter values are,

 = 0.3; μ = 0.02; k = 1.25;  = 0.35;  = 0.1;  = 0.35;  = 0.6; 
 = 0.01;  = 0.03;  = 0.14; d = 0.2;  = 0.05;  = 0.09;

uc, vc are the control variables

Here, 

•  represents the rate at which light drug users become 
heavy drug users 

•    the rates of detection and rehabilitation of 
individuals in classes Iv, Mv, Iav 

• ,  the rates at which light and heavy illicit drug users 
develop mental illness

• , d the permanent exit rates of light and heavy users

•  mentally ill individuals who permanently exit the 
model because of death

•  the rate at which individuals recover as a result of 
rehabilitation

•  the strength of interactions between susceptible 
individuals and illicit drug users

• uc represents the reduction of the intensity of “social 
infl uence” 

• vc models the effort on the detection of illicit drug users

Bifurcation analysis for problem 2

When bifurcation analysis with   as the bifurcation 
parameter was performed on the equations representing 
problem 2, a branch point was found at [Sv, Iv, Iav, Mv, Rv, ] = 
[1.0, 0.0, 0.0, 0.0, 0.0, 0.430112]. The bifurcation diagram is 
shown in Figure 2a. 

MLNMPC for problem 2

For the MNLMPC of problem 2, ( )I tv  and ( )I tav  were 

minimized individually and both the minimizations resulted 
in a value of 0. The multiobjective optimal control problem 

involved the minimization of 
2 2( ( )) ( ( ))I t I tv av   the 

subject to the dynamic equation set representing this problem. 

Figure 1g: MNLMPC diagram for problem 1 ( u1 vs. t). 

Figure 1h: MNLMPC diagram for problem 1 (u2 vs. t).

Figure 1i: MNLMPC diagram for problem 1 (u3 vs. t). 

Figure 2a: (Bifurcation diagram for problem 2).



101

https://www.organscigroup.com/jcmc

Citation: Sridhar LN. Bifurcation Analysis and Multiobjective Nonlinear Model Predictive Control of Drug Addiction Models. J Cardiovasc Med Cardiol. 2024;11(4):096-
102. Available from: https://dx.doi.org/10.17352/2455-2976.000215

This resulted in the Utopia point of 0 and the MNLMPC values 
of the control variables obtained were [u1, u2, u3] = [0.0004, 
0.0405, 0.5362]. The various MNLMPC profi les are shown in 
Figures 2b-2h.

Two problems involving drug addiction models have been 
shown to exhibit branch points leading to two different solution 
branches. In both cases, it is computationally shown that the 
MNLMPC calculations would converge to the Utopia solution as 
the theoretical analysis predicts. 

Conclusions and future work

Branch points leading to two separate branches were 
exhibited when bifurcation analysis was performed on the two 
drug addiction models considered in this paper. The rigorous 
analysis demonstrated that the presence of the branch points 
would result in the MNLMPC calculations converging to the 
Utopia solution. This fact was also computationally validated. 
The presence of the branch points indicates that there are two 
paths that the drug abuse dynamics can take. The attainment of 
the Utopia point shows that the number of light and heavy drug 
users can both be minimized while maximizing the number of 
users who do not take drugs. Future work would involve using 
drug addiction models with time delay. 

Data availability statement 

All data used is presented in the paper. 

References

1. Bae Y. Chaotic dynamics in tobacco’s addiction model. Int J Fuzzy Logic 
Intell Syst. 2014;14(4):322-331. 
Available from: https://doi.org/10.5391/IJFIS.2014.14.4.322 

Figure 2b: MNLMPC diagram for problem 2 (sv vs. t). 

Figure 2c: MNLMPC diagram for problem 2 (iv vs. t). 

Figure 2d: MNLMPC diagram for problem 2 (rv vs. t). 

Figure 2e: MNLMPC diagram for problem 2 (mv vs. t). 

Figure 2f: MNLMPC diagram for problem 2 (iav vs.t). 

Figure 2g: MNLMPC diagram for problem 2 (uc vs. t). 

Figure 2h: MNLMPC diagram for problem 2 ( vc vs. t). 



102

https://www.organscigroup.com/jcmc

Citation: Sridhar LN. Bifurcation Analysis and Multiobjective Nonlinear Model Predictive Control of Drug Addiction Models. J Cardiovasc Med Cardiol. 2024;11(4):096-
102. Available from: https://dx.doi.org/10.17352/2455-2976.000215

2. Mushayabasa S, Bhunu CP. Epidemiological consequences of non-
compliance to HCV therapy among intravenous drug users. Int J Res Rev 
Appl Sci. 2011;8(3):288-295. Available from: https://www.researchgate.
net/profi le/Steady-Mushayabasa/publication/247967360_Epidemiological_
consequences_of_non-compliance_to_HCV_therapy_among_intravenous_
drug_users/links/00b7d5285d94cc6830000000/Epidemiological-
consequences-of-non-compliance-to-HCV-therapy-among-intravenous-drug-
users.pdf 

3. Mushayabasa S. The role of optimal intervention strategies on controlling 
excessive alcohol drinking and its adverse health effects. J Appl Math. 
2015;2015:238784. Available from: https://doi.org/10.1155/2015/238784 

4. Mushayabasa S, Tapedzesa G. Modeling illicit drug use dynamics and its 
optimal control analysis. Comput Math Methods Med. 2015;2015:383154. 
Available from: https://doi.org/10.1155/2015/383154 

5. Hasan M, Shahin ASM. Drug rehabilitation center based survey on drug 
dependence in Dhaka city. Update Dent Coll J. 2013;3(1):32-36. Available 
from: http://dx.doi.org/10.3329/updcj.v3i1.17982 

6. Islam MA, Biswas MHA. Mathematical analysis of dynamic model of drug 
addiction in Bangladesh. Abstr Proc Int Conf Adv Comput Math. 2017. 
Department of Mathematics, University of Dhaka, Bangladesh. Available 
from: 

7. Islam MA, Biswas MH. Optimal control strategy applied to a dynamic model 
of drug abuse incident for reducing its adverse effects. 2020;05. Available 
from: https://doi.org/10.1101/2020.05.02.20088468 

8. Lavi O, Gottesman MM, Levy D. The dynamics of drug resistance: A 
mathematical perspective. Drug Resist Updat. 2012;15(1-2):90-97. Available 
from: https://doi.org/10.1016/j.drup.2012.01.003 

9. Nyabadza F, Njagarah JBH, Smith RJ. Modelling the dynamics of crystal 
meth (‘Tik’) abuse in the presence of drug-supply chains in South Africa. 
Bull Math Biol. 2013;75(1):24-48. Available from: https://link.springer.com/
article/10.1007/s11538-012-9790-5 

10. White E, Comiskey C. Heroin epidemics, treatment and ODE modeling. Math 
Biosci. 2007;208(1):312-324. Available from: https://doi.org/10.1016/j.
mbs.2006.10.008 

11. Isa RS, Emmanuel S, Danat NT, Abubakar SS, Hwere TS, Garba U. 
Mathematical modeling of illicit drug use dynamics examining the impact of 
recycling recovered individuals into the population. Appl Math Comput Intell 
(AMCI). 2024;13(2):74-99. Available from: https://doi.org/10.58915/amci.
v13i2.226 

12. Donoghoe M. Illicit drugs. In: Murray CJL, Lopez AD, editors. Quantifying 
Global Health Risks: The Burden of Disease Attributable to Selected Risk 
Factors. Cambridge, Mass: Harvard University Press; 1996.

13. Murray RM, Morrison PD, Henquet C, Di Forti M. Cannabis, the mind, and 
society: the hash realities. Nat Rev Neurosci. 2007;8(11):885-895. Available 
from: http://dx.doi.org/10.1038/nrn2253 

14. Pluddemann A, Dada S, Parry C. Monitoring alcohol and drug abuse trends 
in South Africa, South Africa Community Epidemiology Network on Drug Use 
(SACENDU). SACENDU Res Brief. 2008;11(2).

15. McGinty EE, Daumit GL. Integrating mental health and addiction treatment 
into general medical care: the role of policy. Psychiatr Serv. 2020;71:1163–
1169. Available from: https://doi.org/10.1176/appi.ps.202000183 

16. Hooker SA, Sherman MD, Lonergan-Cullum M, Sattler A, Liese BS, Justesen 
K, et al. Mental health and psychosocial needs of patients being treated 
for opioid use disorder in a primary care residency clinic. J Prim Care 
Community Health. 2020;11:2150132720932017. 
Available from: https://doi.org/10.1177/2150132720932017 

17. Butler A, Nicholls T, Samji H, Fabian S, Lavergne MR. Prevalence of mental 
health needs, substance use, and co-occurring disorders among people 
admitted to prison. Psychiatr Serv. 2021;73:737–744. 
Available from: https://doi.org/10.1176/appi.ps.202000927 

18. Scott CK, Dennis ML, Grella CE, Mischel AF, Carnevale J. The impact of 
the opioid crisis on U.S. state prison systems. Health Justice. 2021;9:17. 
Available from: https://doi.org/10.1186/s40352-021-00143-9 

19. Chang JE, Franz B, Pagán JA, Lindenfeld Z, Cronin CE. Substance use 
disorder program availability in safety-net and non-safety-net hospitals in the 
US. JAMA Netw Open. 2023;6:e2331243. 
Available from: https://doi.org/10.1001/jamanetworkopen.2023.31243 

20. Paquette CE, Daughters SB, Witkiewitz K. Expanding the continuum of 
substance use disorder treatment: nonabstinence approaches. Clin Psychol 
Rev. 2022;91:102110. 
Available from: https://doi.org/10.1016/j.cpr.2021.102110 

21. Akanni JO, Olaniyi S, Akinpelu FO. Global asymptotic dynamics of a nonlinear 
illicit drug use system. J Appl Math Comput. 2021;66:39-60. Available from: 
https://doi.org/10.1007/s12190-020-01423-7 

22. A, A., Akanni JO. Dynamics of illicit drug use and banditry population with 
optimal control strategies and cost-effectiveness analysis. Comput Appl 
Math. 2022;41:Paper No. 53, 37. 
Available from: https://doi.org/10.1007/s40314-022-01760-2 

23. Olaniyi S, Akanni JO, Adepoju OA. Optimal control and cost-effectiveness 
analysis of an illicit drug use population dynamics. J Appl Nonlinear Dyn. 
2023;12:133-146. Available from: https://www.lhscientifi cpublishing.com/
Journals/articles/DOI-10.5890-JAND.2023.03.010.aspx 

24. Dhooge A, Govaerts W, Kuznetsov AY. MATCONT: A Matlab package 
for numerical bifurcation analysis of ODEs. ACM Trans Math Softw. 
2003;29(2):141-164. Available from: https://doi.org/10.1145/779359.779362 

25. Dhooge A, Govaerts W, Kuznetsov YA, Mestrom W, Riet AM. CL_MATCONT; A 
continuation toolbox in Matlab. 2004. 
Available from: http://dx.doi.org/10.1145/952532.952567 

26. Kuznetsov YA. Elements of applied bifurcation theory. New York: Springer; 
1998. Available from: https://www.ma.imperial.ac.uk/~dturaev/kuznetsov.
pdf 

27. Kuznetsov YA. Five lectures on numerical bifurcation analysis. Utrecht; 2009.

28. Govaerts WJF. Numerical Methods for Bifurcations of Dynamical Equilibria. 
Philadelphia: SIAM; 2000. Available from: https://epubs.siam.org/
doi/10.1137/1.9780898719543 

29. Sridhar LN. Elimination of oscillations in fermentation processes. AIChE J. 
2011;57(9):2397-2405. Available from: https://doi.org/10.1002/aic.12457 

30. Flores-Tlacuahuac A, Morales P, Riveral Toledo M. Multiobjective nonlinear 
model predictive control of a class of chemical reactors. Ind Eng Chem Res. 
2012;17:5891-5899. Available from: https://doi.org/10.1021/ie201742e 

31. Sridhar LN. Multiobjective optimization and nonlinear model predictive 
control of the continuous fermentation process involving Saccharomyces 
cerevisiae. Biofuels. 2022;13:249-264. Available from: https://doi.org/10.108
0/17597269.2019.1674000 

32. Miettinen KM. Nonlinear Multiobjective Optimization. Kluwer International 
Series; 1999. Available from: https://books.google.co.in/books/about/
Nonlinear_Multiobjective_Optimization.html?id=ha_zLdNtXSMC&redir_esc=y 

33. Hart WE, Laird CD, Watson JP, Woodruff DL, Hackebeil GA, Nicholson BL, 
Siirola JD. Pyomo – Optimization Modeling in Python. 2nd ed. 67;2017. 
Available from: https://link.springer.com/book/10.1007/978-3-319-58821-6 

34. Biegler LT. An overview of simultaneous strategies for dynamic optimization. 
Chem Eng Process Process Intensif. 2007;46:1043-1053. Available from: 
https://doi.org/10.1016/j.cep.2006.06.021 

35. Wächter A, Biegler L. On the implementation of an interior-point fi lter line-
search algorithm for large-scale nonlinear programming. Math Program. 
2006;106:25-57. Available from: https://doi.org/10.1007/s10107-004-0559-y 

36. Tawarmalani M, Sahinidis NV. A polyhedral branch-and-cut approach to 
global optimization. Math Program. 2005;103(2):225-249. Available from: 
https://link.springer.com/article/10.1007/s10107-005-0581-8


