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Introduction
Likewise the 1991 Gulf War, known as a “mother of all battles”, 

oxidative stress (OS) can be considered as a “mother” of many human 
diseases life threatening. OS is a condition in which oxidation exceeds 
the anti-oxidant reactions, causing an imbalance between oxidative 
and anti-oxidant systems, with prevalence of reactive oxygen species 
ROS [1-5]. These include: peroxide, superoxide, hydroxyl radical, 
singlet oxygen and others. Under normal conditions ROS are 
maintained at physiological levels by several endogenous antioxidant 
systems, as superoxide dismutase, catalase, glutathione peroxidases, 
lacto-peptidases, glutathione reductase and others [6]. However, 
if active ROS are excessively generated, the balance between the 
formation and the removal of these species is lost. Generating 
oxidative damage (disruption between antioxidant defenses and 
ROS production) [7]. ROS can be generated from both endogenous 
and exogenous sources. Endogenous ROS are produced in normal 
metabolic reactions. Exogenous ROS derive by exposure to cigarette 
smoke, environmental pollutants, consumption of alcohol in excess, 
exposure to ionizing radiations, viral and bacterial infections, and 
others [8]. Individual, hereditary factors, and lifestyle are the main 
determinants of OS. Useful methods to evaluate OS include [9,10]. 
A) Measurement of ROS; B) Detection of oxidized DNA and lipids; 

C) Quantification of anti-oxidants. These ROS can attack some 
molecules in biological membranes and tissues, thus inducing various 
diseases [7,11]. Afterwards, we refer on some pathologies favored by 
detrimental effects of ROS, responsible for morbidity and death of 
total population [12-19]. We also refer on healthy ageing connected 
to OS in different ways [20,21] (Figure 1).

Atherosclerosis
Atherosclerosis is the result of the oxidation of the low density 

lipoproteins (LDL) present in the arterial wall and produced by ROS. 
The LDL-oxidation induces, in turn, the expression of adhesion-
molecules, the proliferation and migration of smooth muscle cells, 
the oxidation of lipids, the endothelial dysfunction (apoptosis) and 

Abstract

Oxidative stress, characterized by the production in excess of free radicals, is the main aspect of all 
living systems which use oxygen to convert biochemical energy coming from nutrients into adenosine 
triphosphate. In turn free radicals, also called reactive oxygen species , induce oxidative damage to 
some cellular macromolecules, as lipids, proteins, and DNA .Increased reactive oxygen species serum 
concentration has been implicated in the pathogenesis of some, common human diseases, included 
both healthy and diseased ageing. The most frequent pathologies involved are: atherosclerosis, 
cancer, Alzheimer’s and Parkinson’s Diseases and chronic obstructive pulmonary disease. Together 
with these, other, less frequent diseases can be interested, as chronic fatigue syndrome, lateral 
amyotrophic sclerosis and skin diseases. Therefore oxidative stress, that is an imbalance of an 
essential biochemical reaction physiologically happening in the human body, can be considered as one 
of the sources of the most common human pathologies and of the aging process.

Figure 1: The greater number of human pathologies favoured by oxidative 
stress.
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the alteration of vasomotor activity [22-24]. In confirmation of the 
role of ROS in the progressive endothelium dysfunction we underline 
the increased Nitrosodine (a cellular marker of OS) concentration 
in aged subjects in comparison with young healthy individuals [25]. 
Further, oxidized-LDL influences the release of some cytokynes’, 
such as IL-1β, IL-6 and TNF-α, responsible for acute inflammatory 
processes of arterial wall. Another mechanism through which 
OS participates to atherogenesis consists in the production of 
trascription factors, as nuclear factor xB (NF-xB) and activator 
protein 1, which participate in the expression of adhesion molecules 
as vascular cellular adhesion molecules (VCAM-1), intracellular 
adhesion molecules (ICAM-1) and other cytokines acting in smooth 
muscle cells of atherosclerotic vessels [26,27]. In addition, ROS are 
able to modulate matrix metalloproteinases (MMPs) degradation and 
could contribute to the instability of atherosclerotic plaques [28,29]. 
The role plays by OS in the atherosclerotic process was confirmed by 
the use of statins in atherosclerosis. As well as the cholesterol levels’ 
reduction, these drugs also lead to an increase of NO production and 
inhibit LDL oxidation [30]. 

Cancer
The cancer-induction is a multifactorial process that involves 

several factors, as genetic, physical, chemical and environmental 
factors. Recent knowledge’s in ROS biology and tumor genesis 
suggest that free radicals control various aspects of tumor 
development including inflammation, transformation, survival, 
proliferation of cancers’ cells, invasion, angiogenesis, and metastasis 
[31-33]. Specifically, free radicals directly or indirectly act, via DNA 
damage, on gene expression and signaling at the cellular levels [9]. 
In succession, the main effects of ROS on tumor genesis and some 
clinical their complications are reported:

Proliferation. OS effects on several biochemical pathways, such 
as epidermal growth factor receptor (EGFR) or mTOR, that involve 
key signaling proteins favoring cells’ reproduction [34]. Metastases. 
ROS contributes to increased cell’s motility, migration and invasion 
of cancer-cells, resulting in tumor expansion and metastases [35]. 
Neo-angiogenesis. Tumors produce many pro-angiogenic factors, 
such as vascular endothelial growth factor (VEGF), its receptor 
(VEGFR), angiopoietin, MMPs, fibroblasts growth factor and others. 
Of these, VEGF has emerged as the crucial role in the regulation of 
neo-angiogenesis. MMPs are a family of enzymes that proteolytically 
degrade some components of the extracellular matrix, favoring 
neo-angiogenesis. That happens by degradation of the vascular 
basement membrane of the extracellular matrix in order to allow 
endothelial cells to migrate and invade into the surrouding tissue. In 
this connection, a recent study pointed out that ROS increase VEGF 
levels and so favour angiogenesis [36-38]. Effects on mRNA. But, OS 
inducing ROS over-production are involved in cancer development 
through the changes produced in microRNA (mRNAs) [39,40]. 
Concerning this topic, Favaro et al. recently confirmed that several 
ROS-related mRNAs are involved in various modalities of cancer-
growth [41]. Physio/chemical therapy. The majority of agents used 
to kill cancer cells (ionizing radiations, most chemotherapeutical 
agents and some targeted therapies) work (through either directly or 
indirectly) generating ROS that block key steps in the cell cycle [42]. In 

this connection, current evidences support that antioxidants protect 
normal cells against the insults of chemotherapy and radiotherapy 
[42]. On the other hand, these same prevent tumorigenesis and 
increase lifespan [43]. 

Insulin resistance and diabetes
Previous investigations provide convincing evidence about the 

relationship between mitochondrial pro-oxidant agents production 
and insulin resistance [44].The link between OS and insulin resistant 
conditions seems to be the inflammatory state [45]. In confirmation 
of the role of OS in metabolic disorders, Meigs et al., demonstrated 
that this is associated with insulin resistance in individuals at average 
or elevated risk of diabetes [46-49]. Initially, the condition of insulin 
resistance is compensated by hyperinsulinemia with normal glucose 
tolerance. Impaired glucose tolerance occurs when either insulin 
resistance increases or compensatory insulin secretory response 
decreases or both occur, accelerating the progression to overt type 2 
diabetes mellitus (T2DM). 

Obesity
A recent editorial of Youn et al., hypothesized that ROS generated 

in vascular smooth muscle cells (VSMC) play an important causal 
role in the development of obesity, causing a condition of overweight 
due to leptin-resistance, glucose intolerance and inflammation [50]. 
On the other hand, the expansion of visceral adipose tissue caused 
by over-consumption of nutrients, generate an increase of visceral 
adipose tissue. As visceral fat stores expand, adipocytes generate 
increased ROS levels and metabolic syndrome [51]. Therefore, two 
conditions (OS and obesity) can be considered reciprocally as cause 
and effect one of another [52,53]. 

Neurodegenerative diseases 
Neurodegenerative diseases indicates a loss of nerve structure 

and function, leading to a progressive brain damage and 
neurodegeneration. Apart from environmental or genetic factors, 
OS largely contributes to neurodegeneration. Particularly, ROS have 
been implicated in the progression of Alzheimer’s disease (AD), 
Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS).

Alzheimer’s disease
Several studies showed that OS plays a central role in the 

neuropathological lesions of AD. There are: beta-amyloid peptide 
deposits (also called as senile plaques), happening at early stage of 
AD and neurofibrillary tangles, typical of the late stage [54]. Recent 
evidences suggest that OS may also favour AD pathogenesis by 
disruption of homeostasis of some metals (such as iron, zinc and 
copper) and ROS accumulation in the mitochondria (mitochondrial 
dysfunction) [55,56]. Therapeutically, it is evidenced that some 
compounds, as Mitoquinone mesylate reduces beta-amyloid 
accumulation decreasing OS [57,58]. Other drugs acting against AD 
as OS antagonists are Sirtuin-1, and omega-3 fatty acids [59,60]. 

Parkinson’s disease
Most of cases of PD are idiopathic. Exposure to some substances 

(as pesticides, organic solvents, toxins) viral and bacteric infections 
play also a role. Obviously, aging di per se is an important factor 
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favoring the onset of PD. But, in all PD variants, OS is the underlying 
mechanism that leads to cellular dysfunctions [61]. The major sources 
of ROS, in PD are: dopaminergic cells’ metabolism, mitochondrial 
dysfunction and neuroinflammation [62]. Specifically, OS happening 
in dopaminergic neurotransmitters, results in modification of 
intracellular macromolecules whose functions are important for 
cell survival. In detail, Dopamine is able to modify a number of 
proteins linked to pathophysiology of PD, such as α-synuclein, 
parkin and others [63,64]. In addition, Dopamine metabolites have 
been shown to induce proteosomal inhibition, which can lead the 
cells to undergo apoptosis [65]. Finally in the disease’s progression, 
Neuromelanin (the last product of Dopamine oxidation) can be 
accumulated in the nigral region (pars compacta) as expression of 
death’s neurons in this region, favouring PD [66]. Another source 
of OS associated with the pathogenesis of PD is the mitochondrial 
dysfunction [62]. Neuronal loss happening in PD is also associated 
with chronic neuroinflammation controlled by microglia [67]. 
For these complicated connections between PD and ROS, it is 
difficult to determine whether OS leads to or is a consequence of 
neurodegeneration [68].

Amyotrophic lateral sclerosis
Amyotrophic Lateral Sclerosis (ALS) is characterized by 

progressive injury and death of lower motor neurons in the spinal 
cord on brainstem, and upper motor neurons in the motor cortex. 
The causes of ALS are unknown but, among the mechanisms 
inducing this, OS is certainly involved [69,70]. An increased 
Nitrosodine (a marker for oxidative damage) levels, was found to 
demonstrate the primary role of OS in the ALS beginning [71]. DNA 
damage induced by elevated levels of hydroxyl-deoxyguanosine was 
described too [72]. In addition, the hypothesis that OS is a cause of 
ALS was indirectly confirmed by the discovery that mutation of anti-
oxidant enzyme superoxide dismutase-1 (SOD-1) was found in a 
significant ALS cases [73]. The mechanism by which mutant enzyme 
leads to motor neuron degeneration was recently identified in the 
neuronal mitochondrial damage induced by the SOD-1 mutation 
[74]. Excitotoxicity, mitochondrial dysfunction, protein aggregation, 
cytoskeletal dysfunction and others are other mechanisms implicated 
in motor neuron injury. 

Ageing
Although the mechanisms inducing ageing are poorly 

understood, a growing body of evidence points ROS as one of the main 
determinants of this condition. The effect is attained by the OS acting 
on some macromolecules, such as DNA, proteins, carbohydrates, 
and lipids. The age-dependent accumulation of ROS induces a loss 
of human organs’ function, with chronic changes of physiological 
conditions and acceleration of cells death. In this regard, Hartman 
firstly proposed the “free theory of aging” [20]. Particularly, oxidative 
damage in aged organisms happens in specific intracellular organelles, 
as the mitochondria [75]. But, several evidences does not support 
this statement [76]. In contrast with Hartman theory of ageing, 
recent evidences shown that increasing ROS generation can increase 
longevity even rather than reducing [77,78]. In favour of the positive 
effects of ROS on healthspan, Gomez-Cabrera et al. demonstrated 

that ROS stimulate physiological adaptation to physical exercise 
[79]. In accordance with these controversial effects of free radicals 
on healthy ageing, it must be also relate on the conflicting results 
obtained by the antioxidant supplementation. A recent meta-analysis 
show no evidence to support the use of vitamin and antioxidant 
supplements for prevention of age-related diseases [80]. But, a meta-
analysis on the risk of Alzheimer’s disease shown that dietary intakes 
of vitamin E, vitamin C, and beta carotene can lower the risk of this 
disease [81]. Therefore, the effectiveness of anti-oxidants’ treatment 
to contrast age-related diseases is still uncertain and further studies 
are requested [82].

Other diseases
OS also intervenes in other pathologic conditions frequently 

occurring among human diseases, such as chronic fatigue syndrome, 
chronic obstructive pulmonary disease, and skin disease .

Chronic fatigue syndrome
Chronic fatigue syndrome (CFS) is an emerging disorder, 

particularly frequent in women. The syndrome is characterized by 
incapacitating fatigue of at least 6 months duration. It can affect 
every major system in the body, with neurological, immunological, 
hormonal, gastro-intestinal, musculoskeletal and pshycological 
problems [83]. The pathophysiology of the syndrome remains 
elusive. Initially, Holmes et al. proposed persisting infections as 
cause [84]. Smith et al. hypothesized a possible association between 
leukocyte antigen and CFS [85]. But, OS is certainly involved in CFS 
pathogenesis. In this area, Kennedy et al. recently reported high levels 
of OS in patients suffering of this patholology [86]. Particularly, OS 
produced in the muscle appears to be a primary target of CFS. In fact, 
the sarcolemmal and sarcoplasmic membranes of CFS patients clearly 
present signs of OS [87]. The mitochondrial respiratory chain is the 
major site of ROS production in muscle cells [88]. 

Chronic obstructive pulmonary disease 
It is known that the pathogenesis of chronic obstructive pulmonary 

disease (COPD) depends on the interaction between environmental 
and genetic factors. Among the firsts , the most important factor of 
COPD acting in the western world is the cigarette smoking and the 
inhalation of combustion products [89]. Concerning this, OS plays an 
important role through injury to the respiratory apparatus [90]. Lipid 
peroxidation is the leading expression of OS happening in patients 
with COPD. That results in the degradation of polyunsaturated fatty 
acids, and leads to the alterations in the structure and permeability 
of the membrane. In turn, the alterated structure-permeability of 
membrane results in loss of ion-exchange selectivity, release in the 
contents of organelles, and formation of cytotoxic products, such as 
malondialdehyde and isoprostanes [91,92].

Skin disease
Skin is a largest human body organ that provides an interface 

between the environment and the body. For its position, skin is a 
major target for toxic insults. Physical and chemical agents produce 
OS in skin. These include gaseous airborne environmental pollutants, 
UV, solar radiations, food contaminants, cosmetic products, drugs, 
and others. The consequent release of ROS is involved in the 
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pathogenesis of a number of human skin diseases (SD), including 
cutaneous neoplasia [93,94].

Antioxidant treatment
Antioxidants are molecules which can safety interact with 

free radicals or terminate the chain reaction before vital molecules 
are damaged. The main antioxidants are vitamin E, beta carotene 
and vitamin C. Selenium, glutathione, flavonoids, lipoic acid and 
ubiquinol are also included. The body cannot manufacture the 
micronutrients, so they must be supplied in the diet. Antioxidants 
may exert their effect on biological systems by different mechanisms 
including electron donation, metal ion chelation, or indirectly by 
inhibiting the activity or expression of free radicals generating 
enzymes or enhancing the activity or expression of intracellular 
antioxidant enzymes [95].

Conclusive Remarks
Conclusively OS, as disturbance in the balance between the ROS 

production and antioxidant defense, is characterized by a prevalence 
of free radicals on antioxidant compounds. That induces an oxidative 
damage to some molecules, such as lipids, proteins and DNA, 
and represents a common denominator involved as pathogenetic 
mechanism responsible for most frequent human diseases. The 
process is also a main responsible for healthy and diseased ageing. 
Therefore, it represents the principal collateral cause of most diseases 
and death of people. Neverthless, despite the beneficial effects of 
several anti-oxidants on ROS action, at present none effective defense 
against their detrimental effects there is and further experiences are 
need to solve the question. 
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