Research Progress in the Cardiovascular Disease field Involving Irisin
Main Article Content
Abstract
Abstract
Fibronectin type III Domain-containing 5 (FNDC5) is a precursor of Irisin. In skeletal muscle, the transcriptional coactivator PPAR-γ Coactivator-1α (PGC1-α) stimulates FNDC5 expression through biological reactions. FNDC5 is a membrane protein that is cleaved and secreted as irisin, a newly identified hormone. Irisin plays a critical role in modulating body metabolism, thermogenesis, and oxidative stress reduction. In recent years, studies on Irisin have increasingly emerged in the rapidly advancing field of cardiovascular diseases. This review summarizes recent findings on the correlation between irisin and cardiovascular diseases (such as lipid metabolism, acute myocardial infarction, heart failure, myocardial remodeling, blood pressure regulation and biomarkers, etc.), and outlines future research directions.
Downloads
Article Details
Copyright (c) 2025 Liu J, et al.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Zhang T, Yi Q, Huang W, Feng J, Liu H. New insights into the roles of irisin in diabetic cardiomyopathy and vascular diseases. Biomed Pharmacother. 2024;175:116631. Available from: https://doi.org/10.1016/j.biopha.2024.116631
Slate-Romano JJ, Yano N, Zhao TC. Irisin reduces inflammatory signaling pathways in inflammation-mediated metabolic syndrome. Mol Cell Endocrinol. 2022;552:111676. Available from: https://doi.org/10.1016/j.mce.2022.111676
Zhang X, Xu S, Hu Y, Liu Q, Liu C, Chai H, et al. Irisin exhibits neuroprotection by preventing mitochondrial damage in Parkinson's disease. NPJ Parkinsons Dis. 2023;9(1):13. Available from: https://doi.org/10.1038/s41531-023-00453-9
Cicek MA, Tuygar Okutucu F, Ozturk N. Irisin, adropin, and preptin as biomarkers of energy dysregulation in depressive disorder. Curr Med Res Opin. 2023;39(9):1263-1270. Available from: https://doi.org/10.1080/03007995.2023.2247317
Hisamatsu T, Miura K, Arima H, Fujiyoshi A, Kadota A, Kadowaki S, et al. Relationship of serum irisin levels to prevalence and progression of coronary artery calcification: a prospective, population-based study. Int J Cardiol. 2018;267:177-182. Available from: https://doi.org/10.1016/j.ijcard.2018.05.075
Fatima SS, Khalid E, Ladak AA, Ali SA. Colostrum and mature breast milk analysis of serum irisin and sterol regulatory element-binding proteins-1c in gestational diabetes mellitus. J Matern Fetal Neonatal Med. 2019;32(18):2993-2999. Available from: https://doi.org/10.1080/14767058.2018.1454422
Tommasini E, Missaglia S, Vago P, Galvani C, Pecci C, Rampinini E, et al. The time course of irisin release after an acute exercise: relevant implications for health and future experimental designs. Eur J Transl Myol. 2024;34(2):12693. Available from: https://doi.org/10.4081/ejtm.2024.12693
JL, QS, WBZ, YGS. Influence of ethanol intake on serum oxidized low-density lipoprotein in rats fed with high fat diet. China Mod Med. 2016;23(35):138-140.
Hsieh IC, Ho MY, Wen MS, Chen CC, Hsieh MJ, Lin CP, et al. Serum irisin levels are associated with adverse cardiovascular outcomes in patients with acute myocardial infarction. Int J Cardiol. 2018;261:12-17. Available from: https://doi.org/10.1016/j.ijcard.2017.11.072
Hirayama K, Ishii H, Kikuchi R, Suzuki S, Aoki T, Harada K, et al. Clinical impact of circulating irisin on classified coronary plaque characteristics. J Appl Lab Med. 2018;3(1):79-88. Available from: https://doi.org/10.1373/jalm.2017.025296
Efe TH, Açar B, Ertem AG, Yayla KG, Algül E, Yayla Ç, et al. Serum irisin level can predict the severity of coronary artery disease in patients with stable angina. Korean Circ J. 2017;47(1):44-49. Available from: https://doi.org/10.4070/kcj.2016.0079
Li H, Shen J, Wu T, Kuang J, Liu Q, Cheng S, et al. Irisin is controlled by farnesoid X receptor and regulates cholesterol homeostasis. Front Pharmacol. 2019;10:548. Available from: https://doi.org/10.3389/fphar.2019.00548
Xiong X, Geng Z, Zhou B, Zhang F, Han Y, Zhou YB, et al. Fndc5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophage polarization in obesity. Metabolism. 2018;83:31-41. Available from: https://doi.org/10.1016/j.metabol.2018.01.013
Tang H, Yu R, Liu S, Huwatibieke B, Li Z, Zhang W. Irisin inhibits hepatic cholesterol synthesis via AMPK-SREBP2 signaling. EBioMedicine. 2016;6:139-148. Available from: https://doi.org/10.1016/j.ebiom.2016.02.041
Zhang Y, Mu Q, Zhou Z, Song H, Zhang Y, Wu F, et al. Protective effect of irisin on atherosclerosis via suppressing oxidized low-density lipoprotein induced vascular inflammation and endothelial dysfunction. PLoS One. 2016;11(6):e0158038. Available from: https://doi.org/10.1371/journal.pone.0158038
Abd El-Mottaleb NA, Galal HM, El Maghraby KM, Gadallah AI. Serum irisin level in myocardial infarction patients with or without heart failure. Can J Physiol Pharmacol. 2019;97(10):932-938. Available from: https://doi.org/10.1139/cjpp-2018-0736
Lu J, Xiang G, Liu M, Mei W, Xiang L, Dong J. Irisin protects against endothelial injury and ameliorates atherosclerosis in apolipoprotein E-null diabetic mice. Atherosclerosis. 2015;243(2):438-448. Available from: https://doi.org/10.1016/j.atherosclerosis.2015.10.020
Peyter A, Armengaud J, Guillot E, Yzydorczyk C. Endothelial progenitor cells dysfunctions and cardiometabolic disorders: from mechanisms to therapeutic approaches. Int J Mol Sci. 2021;22(13):6667. Available from: https://doi.org/10.3390/ijms22136667
Evans CE, Iruela-Arispe ML, Zhao Y. Mechanisms of endothelial regeneration and vascular repair and their application to regenerative medicine. Am J Pathol. 2021;191(1):52-65. Available from: https://doi.org/10.1016/j.ajpath.2020.10.001
Zhang M, Xu Y, Jiang L. Irisin attenuates oxidized low-density lipoprotein impaired angiogenesis through AKT/mTOR/S6K1/Nrf2 pathway. J Cell Physiol. 2019;234(10):18951-18962. Available from: https://doi.org/10.1002/jcp.28535
De Meneck F, Victorino De Souza L, Oliveira V, Do Franco MC. High irisin levels in overweight/obese children and its positive correlation with metabolic profile, blood pressure, and endothelial progenitor cells. Nutr Metab Cardiovasc Dis. 2018;28(7):756-764. Available from: https://doi.org/10.1016/j.numecd.2018.04.009
Zhu G, Wang J, Song M, Zhou F, Fu D, Ruan G, et al. Irisin increased the number and improved the function of endothelial progenitor cells in diabetes mellitus mice. J Cardiovasc Pharmacol. 2016;68(1):67-73. Available from: https://doi.org/10.1097/fjc.0000000000000386
Mcdonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2023 focused update of the 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2023;44(37):3627-3639. Available from: https://doi.org/10.1093/eurheartj/ehad195
Costanzo MR. The cardiorenal syndrome in heart failure. Cardiol Clin. 2022;40(2):219-235. Available from: https://doi.org/10.1016/j.ccl.2021.12.010
Gureev AP, Shaforostova EA, Popov VN. Regulation of mitochondrial biogenesis as a way for active longevity: interaction between the NRF2 and PGC-1alpha signaling pathways. Front Genet. 2019;10:435. Available from: https://doi.org/10.3389/fgene.2019.00435
Liu M, Lv J, Pan Z, Wang D, Zhao L, Guo X. Mitochondrial dysfunction in heart failure and its therapeutic implications. Front Cardiovasc Med. 2022;9:945142. Available from: https://doi.org/10.3389/fcvm.2022.945142
Oka S, Sabry AD, Cawley KM, Warren JS. Multiple levels of PGC-1alpha dysregulation in heart failure. Front Cardiovasc Med. 2020;7:2. Available from: https://doi.org/10.3389/fcvm.2020.00002
Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463-468. Available from: https://doi.org/10.1038/nature10777
Peng Q, Ding R, Wang X, Yang P, Jiang F, Chen X. Effect of irisin on pressure overload-induced cardiac remodeling. Arch Med Res. 2021;52(2):182-190. Available from: https://doi.org/10.1016/j.arcmed.2020.10.006
Ho M, Wen M, Yeh J, Hsieh IC, Chen CC, Hsieh MJ, et al. Excessive irisin increases oxidative stress and apoptosis in murine heart. Biochem Biophys Res Commun. 2018;503(4):2493-2498. Available from: https://doi.org/10.1016/j.bbrc.2018.07.005
Sobieszek G, Powrozek T, Mazurek M, Skwarek-Dziekanowska A, Malecka-Massalska T. Electrical and hormonal biomarkers in cachectic elderly women with chronic heart failure. J Clin Med. 2020;9(4):1021. Available from: https://doi.org/10.3390/jcm9041021
Kalkan AK, Cakmak HA, Erturk M, Kalkan KE, Uzun F, Tasbulak O, et al. Adropin and irisin in patients with cardiac cachexia. Arq Bras Cardiol. 2018;111(1):39-47. Available from: https://doi.org/10.5935/abc.20180109
Silvestrini A, Bruno C, Vergani E, Venuti A, Favuzzi AMR, Guidi F, et al. Circulating irisin levels in heart failure with preserved or reduced ejection fraction: a pilot study. PLoS One. 2019;14(1):e0210320. Available from: https://doi.org/10.1371/journal.pone.0210320
Ma C, Ding H, Deng Y, Liu H, Xiong X, Yang Y. Irisin: a new code uncover the relationship of skeletal muscle and cardiovascular health during exercise. Front Physiol. 2021;12:620608. Available from: https://doi.org/10.3389/fphys.2021.620608
Zhang L, Xie Q, Tang C, Zhang A. Expressions of irisin and urotensin II and their relationships with blood pressure in patients with preeclampsia. Clin Exp Hypertens. 2017;39(5):460-467. Available from: https://doi.org/10.1080/10641963.2016.1273945
Jiang M, Wan F, Wang F, Wu Q. Irisin relaxes mouse mesenteric arteries through endothelium-dependent and endothelium-independent mechanisms. Biochem Biophys Res Commun. 2015;468(4):832-836. Available from: https://doi.org/10.1016/j.bbrc.2015.11.040
Fu J, Han Y, Wang J, Liu Y, Zheng S, Zhou L, et al. Irisin lowers blood pressure by improvement of endothelial dysfunction via AMPK-Akt-eNOS-NO pathway in the spontaneously hypertensive rat. J Am Heart Assoc. 2016;5(11):e003433. Available from: https://doi.org/10.1161/JAHA.116.003433
Zhang W, Chang L, Zhang C, Zhang R, Li Z, Chai B, et al. Central and peripheral irisin differentially regulate blood pressure. Cardiovasc Drugs Ther. 2015;29(2):121-127. Available from: https://doi.org/10.1007/s10557-015-6580-y
Huo C, Yu X, Sun Y, Li HB, Su Q, Bai J, et al. Irisin lowers blood pressure by activating the NRF2 signaling pathway in the hypothalamic paraventricular nucleus of spontaneously hypertensive rats. Toxicol Appl Pharmacol. 2020;394:114953. Available from: https://doi.org/10.1016/j.taap.2020.114953
Sun N, Chen Y, Fan Y, Chang J, Gao X, Zhao Y, et al. Plasma irisin levels are associated with hemodynamic and clinical outcome in idiopathic pulmonary arterial hypertension patients. Intern Emerg Med. 2021;16(3):625-632. Available from: https://doi.org/10.1007/s11739-020-02467-0
Wu J, Spiegelman BM. Irisin erks the fat. Diabetes. 2014;63(2):381-383. Available from: https://doi.org/10.2337/db13-1586
Li R, Wu S, Wu Y, Wang XX, Chen HY, Xin JJ, et al. Irisin alleviates pressure overload-induced cardiac hypertrophy by inducing protective autophagy via mTOR-independent activation of the AMPK-ULK1 pathway. J Mol Cell Cardiol. 2018;121:242-255. Available from: https://doi.org/10.1016/j.yjmcc.2018.07.250
Lecker SH, Zavin A, Cao P, Arena R, Allsup K, Daniels KM, et al. Expression of the irisin precursor FNDC5 in skeletal muscle correlates with aerobic exercise performance in patients with heart failure. Circ Heart Fail. 2012;5(6):812-818. Available from: https://doi.org/10.1161/CIRCHEARTFAILURE.112.969543