RETRACTED: Repurposing Angiotensin II Receptor Blockers: Unlocking New Therapeutic Horizons
Main Article Content
Abstract
Abstract
Drug repurposing (also known as drug repositioning, reprofiling, or re-tasking) is an approach that seeks to find new therapeutic applications for existing approved or investigational drugs beyond their initial intended uses. The Renin-Angiotensin-Aldosterone System (RAAS) is essential for controlling blood pressure and maintaining fluid balance, driving significant structural changes throughout the cardiovascular system, including the heart and blood vessels. As a result, the RAAS is a key therapeutic target for various chronic cardiovascular diseases, ranging from Arterial Hypertension (AH) to Heart Failure (HF). AT1 antagonists can be potentially used for other diseases such as neurodegenerative diseases, cancer, and osteoarthritis.
Downloads
Article Details
Copyright (c) 2025 Chatzipieris FP, et al.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Pan X, Lin X, Cao D, Zeng X, Yu PS, He L, et al. Deep learning for drug repurposing: methods, databases, and applications. WIREs Comput Mol Sci. 2022;12(4):e1597. Available from: https://doi.org/10.1002/wcms.1597
Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41–58. Available from: https://doi.org/10.1038/nrd.2018.168
Singh TU, Parida S, Lingaraju MC, Kesavan M, Kumar D, Singh RK. Drug repurposing approach to fight COVID-19. Pharmacol Rep. 2020;72(6):1479–508. Available from: https://doi.org/10.1007/s43440-020-00155-6
Kulkarni VS, Alagarsamy V, Solomon VR, Jose PA, Murugesan S. Drug repurposing: an effective tool in modern drug discovery. Russ J Bioorg Chem. 2023;49(2):157–66. Available from: https://doi.org/10.1134/S1068162023020139
Masoudi-Sobhanzadeh Y, Omidi Y, Amanlou M, Masoudi-Nejad A. Drug databases and their contributions to drug repurposing. Genomics. 2020;112(2):1087–95. Available from: https://doi.org/10.1016/j.ygeno.2019.06.021
Dotolo S, Marabotti A, Facchiano A, Tagliaferri R. A review on drug repurposing applicable to COVID-19. Brief Bioinform. 2021;22(2):726–41. Available from: https://doi.org/10.1093/bib/bbaa288
Parisi D, Adasme MF, Sveshnikova A, Bolz SN, Moreau Y, Schroeder M. Drug repositioning or target repositioning: a structural perspective of drug-target-indication relationship for available repurposed drugs. Comput Struct Biotechnol J. 2020;18:1043–55. Available from: https://doi.org/10.1016/j.csbj.2020.04.004
Mishra AS, Vasanthan M, Malliappan SP. Drug repurposing: a leading strategy for new threats and targets. ACS Pharmacol Transl Sci. 2024;7(4):915–32. Available from: https://doi.org/10.1021/acsptsci.3c00361
Maggioni AP. Efficacy of angiotensin receptor blockers in cardiovascular disease. Cardiovasc Drugs Ther. 2006;20(4):295–308. Available from: https://doi.org/10.1007/s10557-006-9799-9
Maggioni AP, Latini R. The angiotensin-receptor blockers: from antihypertensives to cardiovascular all-round medications in 10 years? Blood Press. 2002;11(6):328–38. Available from: https://doi.org/10.1080/080370502321095285
Weber MA. The angiotensin II receptor blockers: opportunities across the spectrum of cardiovascular disease. Rev Cardiovasc Med. 2002;3(4):183–91. Available from: https://pubmed.ncbi.nlm.nih.gov/12556752/
Cavalli A, Bolognesi ML, Minarini A, Rosini M, Tumiatti V, Recanatini M, et al. Multi-Target-Directed Ligands To Combat Neurodegenerative Diseases. J Med Chem. 2008;51(3):347–72. Available from: https://doi.org/10.1021/jm7009364
Brindisi M, Kessler SM, Kumar V, Zwergel C. Editorial: Multi-Target Directed Ligands for the Treatment of Cancer. Front Oncol. 2022;12:980141. Available from: https://doi.org/10.3389/fonc.2022.980141
Makhoba XH, Viegas C Jr, Mosa RA, Viegas FP, Pooe OJ. Potential Impact of the Multi-Target Drug Approach in the Treatment of Some Complex Diseases. DDDT. 2020;14:3235–49. Available from: https://doi.org/10.2147/DDDT.S257494
Kumar B, Thakur A, Dwivedi AR, Kumar R, Kumar V. Multi-Target-Directed Ligands as an Effective Strategy for the Treatment of Alzheimer’s Disease. CMC. 2022;29(10):1757–803. Available from: https://doi.org/10.2174/0929867328666210512005508
Ghofrani HA, Osterloh IH, Grimminger F. Sildenafil: From Angina to Erectile Dysfunction to Pulmonary Hypertension and Beyond. Nat Rev Drug Discov. 2006;5(8):689–702. Available from: https://doi.org/10.1038/nrd2030
Parvathaneni V, Kulkarni NS, Muth A, Gupta V. Drug Repurposing: A Promising Tool to Accelerate the Drug Discovery Process. Drug Discovery Today. 2019;24(10):2076–85. Available from: https://doi.org/10.1016/j.drudis.2019.06.014
Park K. A Review of Computational Drug Repurposing. Transl Clin Pharmacol. 2019;27(2):59. Available from: https://doi.org/10.12793/tcp.2019.27.2.59
Singh B, Cusick AS, Goyal A, Patel P. ACE Inhibitors. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK430896/
Gaidai O, Cao Y, Loginov S. Global Cardiovascular Diseases Death Rate Prediction. Current Problems in Cardiology. 2023;48(5):101622. Available from: https://doi.org/10.1016/j.cpcardiol.2023.101622
Chong B, Jayabaskaran J, Jauhari SM, Chan SP, Goh R, Kueh MTW, et al. Global Burden of Cardiovascular Diseases: Projections from 2025 to 2050. European Journal of Preventive Cardiology. 2024:zwae281. Available from: https://doi.org/10.1093/eurjpc/zwae281
Martin SS, Aday AW, Allen NB, Almarzooq ZI, Anderson CAM, Arora P, et al. 2025 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation. 2025;151(8). Available from: https://doi.org/10.1161/CIR.0000000000001303
Wu C-Y, Hu H-Y, Chou Y-J, Huang N, Chou Y-C, Li C-P. High Blood Pressure and All-Cause and Cardiovascular Disease Mortalities in Community-Dwelling Older Adults. Medicine. 2015;94(47):e2160. Available from: https://doi.org/10.1097/MD.0000000000002160
Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J, et al. Blood Pressure Lowering for Prevention of Cardiovascular Disease and Death: A Systematic Review and Meta-Analysis. Lancet. 2016;387(10022):957–67. Available from: https://doi.org/10.1016/S0140-6736(15)01225-8
McEvoy JW, McCarthy CP, Bruno RM, Brouwers S, Canavan MD, Ceconi C, et al. 2024 ESC Guidelines for the Management of Elevated Blood Pressure and Hypertension. Eur Heart J. 2024;45(38):3912–4018. Available from: https://doi.org/10.1093/eurheartj/ehae178
Conrad N, Judge A, Tran J, Mohseni H, Hedgecott D, Crespillo AP, et al. Temporal Trends and Patterns in Heart Failure Incidence: A Population-Based Study of 4 Million Individuals. Lancet. 2018;391(10120):572–80. Available from: https://doi.org/10.1016/S0140-6736(17)32520-5
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur Heart J. 2021;42(36):3599–726. Available from: https://doi.org/10.1093/eurheartj/ehab368
Ghionzoli N, Gentile F, Del Franco AM, Castiglione V, Aimo A, Giannoni A, et al. Current and Emerging Drug Targets in Heart Failure Treatment. Heart Fail Rev. 2022;27(4):1119–36. Available from: https://doi.org/10.1007/s10741-021-10137-2
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2023 Focused Update of the 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur Heart J. 2023;44(37):3627–39. Available from: https://doi.org/10.1093/eurheartj/ehad195
Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024;105(4S):S117–S314. Available from: https://doi.org/10.1016/j.kint.2023.10.018
Roth GA, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. Global, Regional, and National Age-Sex-Specific Mortality for 282 Causes of Death in 195 Countries and Territories, 1980–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1736–88. Available from: https://doi.org/10.1016/S0140-6736(18)32203-7
Department of Error. Lancet. 2019;393(10190):e44. Available from: https://doi.org/10.1016/S0140-6736(19)31049-9
Department of Error. Lancet. 2018;392(10160):2170. Available from: https://doi.org/10.1016/S0140-6736(18)32833-2
Byrne RA, Rossello X, Coughlan JJ, Barbato E, Berry C, Chieffo A, et al. 2023 ESC Guidelines for the Management of Acute Coronary Syndromes. Eur Heart J. 2023;44(38):3720–826. Available from: https://doi.org/10.1093/eurheartj/ehad191
Evans-Lacko S, Aguzzoli E, Read S, Comas-Herrera A, Farina N. World Alzheimer Report 2024: Global Changes in Attitudes to Dementia.
Liu P-P, Xie Y, Meng X-Y, Kang J-S. History and Progress of Hypotheses and Clinical Trials for Alzheimer’s Disease. Sig Transduct Target Ther. 2019;4(1):29. Available from: https://doi.org/10.1038/s41392-019-0063-8
Huang L-K, Chao S-P, Hu C-J. Clinical Trials of New Drugs for Alzheimer Disease. J Biomed Sci. 2020;27(1):18. Available from: https://doi.org/10.1186/s12929-019-0609-7
Lyu D, Lyu X, Huang L, Fang B. Effects of Three Kinds of Anti-Amyloid-β Drugs on Clinical, Biomarker, Neuroimaging Outcomes and Safety Indexes: A Systematic Review and Meta-Analysis of Phase II/III Clinical Trials in Alzheimer’s Disease. Ageing Research Reviews. 2023;88:101959. Available from: https://doi.org/10.1016/j.arr.2023.101959
Iadecola C. The Pathobiology of Vascular Dementia. Neuron. 2013;80(4):844–66. Available from: https://doi.org/10.1016/j.neuron.2013.10.008
Kisler K, Nelson AR, Montagne A, Zlokovic BV. Cerebral Blood Flow Regulation and Neurovascular Dysfunction in Alzheimer Disease. Nat Rev Neurosci. 2017;18(7):419–34. Available from: https://doi.org/10.1038/nrn.2017.48
Royea J, Hamel E. Brain Angiotensin II and Angiotensin IV Receptors as Potential Alzheimer’s Disease Therapeutic Targets. GeroScience. 2020;42(5):1237–56. Available from: https://doi.lo.1007/s11357-020-00231-y
Kuber B, Fadnavis M, Chatterjee B. Role of Angiotensin Receptor Blockers in the Context of Alzheimer’s Disease. Fundam Clin Pharma. 2023;37(3):429–45. Available from: https://doi.org/10.1111/fcp.12872
Santos CRD, Grigorova YN, McDevitt RA, Long JM, Cezayirli D, Zernetkina V, et al. Treatment with Losartan, an AT1 Receptor Blocker, Improves Cognitive and Cardiovascular Function in a Dahl Salt‐sensitive Rat Model of Age‐associated Vascular Dementia. Alzheimer’s & Dementia. 2022;18(S3):e062715. Available from: https://doi.org/10.1002/alz.062715
Bloem BR, Okun MS, Klein C. Parkinson’s Disease. Lancet. 2021;397(10291):2284–303. Available from: https://doi.org/10.1016/S0140-6736(21)00218-X
Contaldi E, Magistrelli L, Milner A, Cosentino M, Marino F, Comi C. Potential Protective Role of ACE-Inhibitors and AT1 Receptor Blockers against Levodopa-Induced Dyskinesias: A Retrospective Case-Control Study. Neural Regen Res. 2021;16(12):2475. Available from: https://doi.org/10.4103/1673-5374.313061
Perez-Lloret S, Otero-Losada M, Toblli JE, Capani F. Renin-Angiotensin System as a Potential Target for New Therapeutic Approaches in Parkinson’s Disease. Expert Opin Investig Drugs. 2017;26(10):1163–73. Available from: https://doi.org/10.1080/13543784.2017.1371133
Udovin L, Otero-Losada M, Bordet S, Chevalier G, Quarracino C, Capani F, et al. Effects of Angiotensin Type 1 Receptor Antagonists on Parkinson’s Disease Progression: An Exploratory Study in the PPMI Database. Parkinsonism Relat Disord. 2021;86:34–7. Available from: https://doi.org/10.1016/j.parkreldis.2021.03.007
Bordet S, Grasso L, Udovin L, Chevalier G, Otero‐Losada M, Capani F, et al. An Open‐Label, Non‐randomized, Drug‐Repurposing Study to Explore the Clinical Effects of Angiotensin II Type 1 (AT1) Receptor Antagonists on Anxiety and Depression in Parkinson’s Disease. Mov Disord Clin Pract. 2025;12(5):653–8. Available from: https://doi.org/10.1002/mdc3.14326
Konain K, Faheem M, Ullah K, Ayub S, Ahmed J, Huma Z, et al. Biomarker-Guided Drug Repurposing and Molecular Validation of Angiotensin-2 Receptor Type-1 in Brain Tumor. Precis Med Com. 2023;3(1):27–42. Available from: https://doi.org/10.55627/pmc.003.01.0296
Lin W-Y, Li L-H, Hsiao Y-Y, Wong W-T, Chiu H-W, Hsu H-T, et al. Repositioning of the Angiotensin II Receptor Antagonist Candesartan as an Anti-Inflammatory Agent With NLRP3 Inflammasome Inhibitory Activity. Front Immunol. 2022;13:870627. Available from: https://doi.org/10.3389/fimmu.2022.870627
Lara VS, Silva RAD, Ferrari TP, Santos CFD, Oliveira SHPD. Losartan Plays a Fungistatic and Fungicidal Activity Against Candida Albicans Biofilms: Drug Repurposing for Localized Candidosis. ASSAY Drug Dev Technol. 2023;21(4):157–65. Available from: https://doi.org/10.1089/adt.2023.013
Sumners C, Peluso AA, Haugaard AH, Bertelsen JB, Steckelings UM. Anti‐fibrotic Mechanisms of Angiotensin AT2‐receptor Stimulation. Acta Physiol. 2019;227(1):e13280. Available from: https://doi.org/10.1111/apha.13280
Juillerat-Jeanneret L. The Other Angiotensin II Receptor: AT2 R as a Therapeutic Target. J Med Chem. 2020;63(5):1978–95. Available from: https://doi.org/10.1021/acs.jmedchem.9b01780
Kawaguchi Y, Takagi K, Hara M, Fukasawa C, Sugiura T, Nishimagi E, et al. Angiotensin II in the Lesional Skin of Systemic Sclerosis Patients Contributes to Tissue Fibrosis via Angiotensin II Type 1 Receptors. Arthritis Rheum. 2004;50(1):216–26. Available from: https://doi.org/10.1002/art.11364
Iwane S, Nemoto W, Miyamoto T, Hayashi T, Tanaka M, Uchitani K, et al. Clinical and Preclinical Evidence That Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers Prevent Diabetic Peripheral Neuropathy. Sci Rep. 2024;14(1):1039. Available from: https://doi.org/10.1038/s41598-024-51572-z
Salmenkari H, Korpela R, Vapaatalo H. Renin–Angiotensin System in Intestinal Inflammation—Angiotensin Inhibitors to Treat Inflammatory Bowel Diseases? Basic Clin Pharma Tox. 2021;129(3):161–72. Available from: https://doi.org/10.1111/bcpt.13624
Pitcher A, Spata E, Emberson J, Davies K, Halls H, Holland L, et al. Angiotensin Receptor Blockers and β Blockers in Marfan Syndrome: An Individual Patient Data Meta-Analysis of Randomised Trials. Lancet. 2022;400(10355):822–31. Available from: https://doi.org/10.1016/S0140-6736(22)01534-3
Matsoukas J, Apostolopoulos V, Zulli A, Moore G, Kelaidonis K, Moschovou K, et al. From Angiotensin II to Cyclic Peptides and Angiotensin Receptor Blockers (ARBs): Perspectives of ARBs in COVID-19 Therapy. Molecules. 2021;26(3):618. Available from: https://doi.org/10.3390/molecules26030618
Moreira FRC, De Oliveira TA, Ramos NE, Abreu MAD, Simões E Silva AC. The Role of Renin Angiotensin System in the Pathophysiology of Rheumatoid Arthritis. Mol Biol Rep. 2021;48(9):6619–29. Available from: https://doi.org/10.1007/s11033-021-06672-8
Kaur B, Singh H, Choudhary G, Prakash A, Medhi B, Chatterjee D, et al. Natural Angiotensin II Type 1 Receptor Inhibitors: Virtual Screening and in Vitro Evaluation of Beta-1,2,3,4,6-Penta-O-Galloyl-d-Glucopyranose, Icarrin, and Sesamin for Osteoarthritis Therapy. Int J Biol Macromol. 2025;309:142184. Available from: https://doi.org/10.1016/j.ijbiomac.2025.142184
Moutevelis-Minakakis P, Gianni M, Stougiannou H, Zoumpoulakis P, Zoga A, Vlahakos AD, et al. Design and Synthesis of Novel Antihypertensive Drugs. Bioorg Med Chem Lett. 2003;13(10):1737–40. Available from: https://doi.org/10.1016/S0960-894X(03)00251-8
Mavromoustakos T, Moutevelis-Minakakis P, Kokotos CG, Kontogianni P, Politi A, Zoumpoulakis P, et al. Synthesis, Binding Studies and in Vivo Biological Evaluation of Novel Non-Peptide Antihypertensive Analogues. Bioorg Med Chem. 2006;14(13):4353–60. Available from: https://doi.org/10.1016/j.bmc.2006.02.044
Zoumpoulakis P, Politi A, Grdadolnik SG, Matsoukas J, Mavromoustakos T. Structure Elucidation and Conformational Study of V8. J Pharm Biomed Anal. 2006;40(5):1097–104. Available from: https://doi.org/10.1016/j.jpba.2005.09.016
Agelis G, Roumelioti P, Resvani A, Durdagi S, Androutsou M-E, Kelaidonis K, et al. An Efficient Synthesis of a Rationally Designed 1,5 Disubstituted Imidazole AT1 Angiotensin II Receptor Antagonist: Reorientation of Imidazole Pharmacophore Groups in Losartan Reserves High Receptor Affinity and Confirms Docking Studies. J Comput Aided Mol Des. 2010;24(9):749–58. Available from: https://doi.org/10.1007/s10822-010-9371-3
Agelis G, Resvani A, Durdagi S, Spyridaki K, Tůmová T, Slaninová J, et al. The Discovery of New Potent Non-Peptide Angiotensin II AT1 Receptor Blockers: A Concise Synthesis, Molecular Docking Studies and Biological Evaluation of N-Substituted 5-Butylimidazole Derivatives. Eur J Med Chem. 2012;55:358–74. Available from: https://doi.org/10.1016/j.ejmech.2012.07.040
Agelis G, Resvani A, Ntountaniotis D, Chatzigeorgiou P, Koukoulitsa C, Androutsou ME, et al. Interactions of the Potent Synthetic AT1 Antagonist Analog BV6 with Membrane Bilayers and Mesoporous Silicate Matrices. Biochim Biophys Acta BBA Biomembr. 2013;1828(8):1846–55. Available from: https://doi.org/10.1016/j.bbamem.2013.03.009
Ridgway H, Moore GJ, Mavromoustakos T, Tsiodras S, Ligielli I, Kelaidonis K, et al. Discovery of a New Generation of Angiotensin Receptor Blocking Drugs: Receptor Mechanisms and in Silico Binding to Enzymes Relevant to SARS-CoV-2. Comput Struct Biotechnol J. 2022;20:2091–111. Available from: https://doi.org/10.1016/j.csbj.2022.04.010
Moore GJ, Ridgway H, Kelaidonis K, Chasapis CT, Ligielli I, Mavromoustakos T, et al. Actions of Novel Angiotensin Receptor Blocking Drugs, Bisartans, Relevant for COVID-19 Therapy: Biased Agonism at Angiotensin Receptors and the Beneficial Effects of Neprilysin in the Renin Angiotensin System. Molecules. 2022;27(15):4854. Available from: https://doi.org/10.3390/molecules27154854
Kelaidonis K, Ligielli I, Letsios S, Vidali VP, Mavromoustakos T, Vassilaki N, et al. Computational and Enzymatic Studies of Sartans in SARS-CoV-2 Spike RBD-ACE2 Binding: The Role of Tetrazole and Perspectives as Antihypertensive and COVID-19 Therapeutics. IJMS. 2023;24(9):8454. Available from: https://doi.org/10.3390/ijms24098454
Agelis G, Resvani A, Koukoulitsa C, Tůmová T, Slaninová J, Kalavrizioti D, et al. Rational Design, Efficient Syntheses and Biological Evaluation of N,N′-Symmetrically Bis-Substituted Butylimidazole Analogs as a New Class of Potent Angiotensin II Receptor Blockers. Eur J Med Chem. 2013;62:352–70. Available from: https://doi.org/10.1016/j.ejmech.2012.12.044
Tsiailanis AD, Renziehausen A, Kiriakidi S, Vrettos EI, Markopoulos GS, Sayyad N, et al. Enhancement of Glioblastoma Multiforme Therapy through a Novel Quercetin-Losartan Hybrid. Free Radic Biol Med. 2020;160:391–402. Available from: https://doi.org/10.1016/j.freeradbiomed.2020.08.007
Tsiailanis AD, Vrettos EI, Choleva M, Kiriakidi S, Ganai AM, Patha TK, et al. Development of a DHA-Losartan Hybrid as a Potent Inhibitor of Multiple Pathway-Induced Platelet Aggregation. J Biomol Struct Dyn. 2022;40(24):13889–900. Available from: https://doi.org/10.1080/07391102.2021.1996461
Kritsi E, Matsoukas M-T, Potamitis C, Karageorgos V, Detsi A, Magafa V, et al. Exploring New Scaffolds for Angiotensin II Receptor Antagonism. Bioorg Med Chem. 2016;24(18):4444–51. Available from: https://doi.org/10.1016/j.bmc.2016.07.047
Ridgway H, Apostolopoulos V, Moore GJ, Gadanec LK, Zulli A, Swiderski J, et al. Computational Evidence for Bisartan Arginine Blockers as Next-Generation Pan-Antiviral Therapeutics Targeting SARS-CoV-2, Influenza, and Respiratory Syncytial Viruses. Viruses. 2024;16(11):1776. Available from: https://doi.org/10.3390/v16111776
Ridgway H, Ntallis C, Chasapis CT, Kelaidonis K, Matsoukas M-T, Plotas P, et al. Molecular Epidemiology of SARS-CoV-2: The Dominant Role of Arginine in Mutations and Infectivity. Viruses. 2023;15(2):309. Available from: https://doi.org/10.3390/v15020309
Ridgway H, Moore GJ, Gadanec LK, Zulli A, Apostolopoulos V, Hoffmann W, et al. Novel Benzimidazole Angiotensin Receptor Blockers with Anti-SARS-CoV-2 Activity Equipotent to That of Nirmatrelvir: Computational and Enzymatic Studies. Expert Opin Ther Targets. 2024;28(5):437–59. Available from: https://doi.org/10.1080/14728222.2024.2362675
Matsoukas JM, Panagiotopoulos D, Keramida M, Mavromoustakos T, Yamdagni R, Wu Q, et al. Synthesis and Contractile Activities of Cyclic Thrombin Receptor-Derived Peptide Analogues with a Phe-Leu-Leu-Arg Motif: Importance of the Phe/Arg Relative Conformation and the Primary Amino Group for Activity. J Med Chem. 1996;39(18):3585–91. Available from: https://doi.org/10.1021/jm950690v
Yuan Y, Li M, Apostolopoulos V, Matsoukas J, Wolf WM, Blaskovich MAT, et al. Tetrazoles: A Multi-Potent Motif in Drug Design. Eur J Med Chem. 2024;279:116870. Available from: https://doi.org/10.1016/j.ejmech.2024.116870
Hajji N, Garcia-Revilla J, Soto MS, Perryman R, Symington J, Quarles CC, et al. Arginine Deprivation Alters Microglial Polarity and Synergizes with Radiation to Eradicate Non-Arginine-Auxotrophic Glioblastoma Tumors. J Clin Invest. 2022;132(6):e142137. Available from: https://doi.org/10.1172/JCI142137